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1 Instructor: Daniel Llamocca 

Solutions - Homework 2 
(Due date: February 4th @ 5:30 pm) 

Presentation and clarity are very important! Show your procedure! 

 

PROBLEM 1 (5 PTS) 
 For the following 4-bit bidirectional port, complete the timing diagram (signals 𝐷𝑂 and 𝐷𝐴𝑇𝐴): 
 

 

 

 

 

 

 

 

 

 

 

 

 

PROBLEM 2 (15 PTS) 
 
a) What is the minimum number of bits required to represent: (2 pts) 

 220,000 colors?   Numbers between 65,000 and 69,096? 
⌈log2 220,000⌉ = 18    ⌈log2(69096 − 65000 + 1)⌉ = ⌈log2 4097⌉ = 13 

 
b) A microprocessor has a 24-bit address line. The size of the memory contents of each address is 8 bits. The memory space 

is defined as the collection of memory positions the processor can address. (5 pts) 
- What is the address range (lowest to highest, in hexadecimal) of the memory space for this microprocessor? What is the 

size (in bytes, KB, or MB) of the memory space? 1KB = 210 bytes, 1MB = 220 bytes, 1GB = 230 bytes 
 

Address range: 0x000000 to 0xFFFFFF 

With 24 bits, we can address 224 bytes, thus we have 24220 = 16 MB 
 

- A memory device is connected to the microprocessor. Based on the size of the memory, 

the microprocessor has assigned the addresses 0xC80000 to 0xCBFFFF to this memory 

device.  
 What is the size (in bytes, KB, or MB) of this memory device? 
 What is the minimum number of bits required to represent the addresses only for this 

memory device? 
 
 

 

 
 
As per the figure, we only need 18 bits for the 
addresses in the given range. Thus, the size of 
the memory device is 218 = 256 KB.  
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c) The figure below depicts the entire memory space of a microprocessor. Each memory address occupies one byte. (8 pts) 
- What is the size (in bytes, KB, or MB) of the memory space? What is the address bus size of the microprocessor? 
- If we have a memory chip of 8MB, how many bits do we require to address 8MB of memory? 
- We want to connect the 8MB memory chip to the microprocessor. Provide an address range so that 8MB of memory is 

properly addressed. You can only use any of the non-occupied portions of the memory space as shown below.  
 
 
 
 
 
 
 
 
 
 
 

- Address Range: 0x0000000 to 0x3FFFFFF. To represent all these addresses, we require 26 bits. So, the address bus 

size of the microprocessor is 26 bits. The size of the memory space is then 226 = 64MB. 

- 8MB memory device: 8MB = 23220 = 223 bytes. Thus, we require 23 bits to address the memory device. 
The 23-bit address range for an 8MB memory would be: 0x000000 to 0x7FFFFF. To place this range within the 26-bit 

memory space in the figure, we have four options. We selected: 0x1000000 to 0x17FFFFF. 

 
 
 

 

 

 

 
 
 

PROBLEM 3 (20 PTS) 
 In these problems, you MUST show your conversion procedure. No procedure  zero points. 

a) Convert the following decimal numbers to their 2’s complement representations: binary and hexadecimal.  (6 pts) 
 -93.3125, 172.65625, -64.5078125, -71.25. 

 93.3125 = 01011101.0101  -93.3125 = 10100010.1011 = 0xA2.B 

 172.65625 = 010101100.10101 = 0x0AC.A8 

 64.5078125 = 01000000.1000001  -64.5078125 = 10111111.0111111 = 0xBF.7E 

 71.25 = 01000111.01  -71.25 = 10111000.11 

 
b) Complete the following table. The decimal numbers are unsigned: (8 pts.) 

Decimal BCD Binary Reflective Gray Code 

299 001010011001 100101011 110111110 

587 010110000111 1001001011 1101101110 

1587 0001010110000111 11000110011 10100101010 

128 000100101000 10000000 11000000 

166 000101100110 10100110 11110101 

114 000100010100 1110010 1001011 

399 001110011001 110001111 101001000 

819 100000011001 1100110011 1010101010 

 
c) Complete the following table. Use the fewest number of bits in each case: (6 pts.) 

REPRESENTATION 

Decimal Sign-and-magnitude 1's complement 2's complement 

-126 11111110 10000001 10000010 

-103 11100111 10011000 10011001 

-70 11000110 10111001 10111010 

-512 11000000000 10111111111 1000000000 

-39 1100111 1011000 1011001 

211 011010011 011010011 011010011 
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PROBLEM 4 (30 PTS) 
a) Perform the following additions and subtractions of the following unsigned integers. Use the fewest number of bits 𝑛 to 

represent both operators. Indicate every carry (or borrow) from c0 to cn (or b0 to bn). For the addition, determine whether 
there is an overflow.  For the subtraction, determine whether we need to keep borrowing from a higher bit. (8 pts) 
 
Example (n=8): 

 54 + 210  77 - 194 

 
 
 
 
 

 

 
 221 + 117  93 – 128 

 76 + 175  130 – 43 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
b) We need to perform the following operations, where numbers are represented in 2's complement: (16 pts) 

 -93 + 128 

 312 + 718 

 87 - 62 

 -255 – 69 

 For each case: 
 Determine the minimum number of bits required to represent both summands. You might need to sign-extend one 

of the summands, since for proper summation, both summands must have the same number of bits. 
 Perform the binary addition in 2’s complement arithmetic. The result must have the same number of bits as the 

summands. 
 Determine whether there is overflow by: 

i. Using 𝑐𝑛, 𝑐𝑛−1 (carries). 

ii. Performing the operation in the decimal system and checking whether the result is within the allowed range for 
𝑛 bits, where 𝑛 is the minimum number of bits for the summands. 

 If we want to avoid overflow, what is the minimum number of bits required to represent both the summands and the 
result? 
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c) Perform the multiplication of the following numbers that are represented in 2’s complement arithmetic with 4 bits. (6 pts) 

 01010101, 10000111, 01111001. 

 

  
 
 
 
 
 
 

 

PROBLEM 5 (10 PTS) 
 Given two 4-bit signed (2’s complement) numbers A, B, sketch the circuit that computes |𝐴 − 2 × 𝐵|. You can only use full 

adders and logic gates. Make sure your circuit works for all cases. If there is overflow, design your circuit so that the final 
answer is always the correct one with the correct number of bits (i.e., overflow must be avoided). 
 

𝐴 = 𝑎3𝑎2𝑎1𝑎0, 𝐵 = 𝑏3𝑏2𝑏1𝑏0 

𝐴, 𝐵 ∈ [−8,7]  2𝐵 ∈ [−16,14] requires 5 bits in 2C. 
 𝑋 = 𝐴 − 2𝐵 ∈ [−22,23] requires 6 bits in 2C. Thus, the operation 𝐴 − 2𝐵 requires 6 bits (we sign-extend 𝐴 and 2𝐵). 

 |𝑋| = |𝐴 − 2𝐵| ∈ [0,23] requires 6 bits in 2C.  Thus, the second operation 0 ± 𝑋) only requires 6 bits. 
 If 𝑥5 = 1 →  𝑋 < 0 → we do 0 − 𝑋. 

 If 𝑥5 = 0 →  𝑋 ≥ 0 → we do 0 + 𝑋. 
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PROBLEM 6 (20 PTS) 
a) Implement the following functions using i) decoders (and OR gates) and ii) multiplexers: (5 pts) 

 𝐹𝑎 = (𝑌 + 𝑍̅̅ ̅̅ ̅̅ ̅)(𝑋𝑌)  𝐹𝑏 = (𝑋̅𝑌̅̅ ̅̅ ̅̅ )𝑍̅ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
b) Using only a 4-to-1 MUX (do not use NOT gates), implement the following functions. (5 pts) 

 𝐹𝑎(𝑋, 𝑌, 𝑍) = ∑(𝑚0, 𝑚2, 𝑚4, 𝑚6, 𝑚7)  𝐹𝑏(𝑋, 𝑌, 𝑍) = ∏(𝑀2, 𝑀4, 𝑀6) 
 
 
 
 
 
 
 
 
 
 
 
c) Complete the timing diagram of the circuit shown below. Note that 𝑥 = 𝑥1𝑥0, 𝑦 = 𝑦3𝑦2𝑦1𝑦0 (10 pts) 
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